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Abstract. It is shown that in the interior region of a finite-range potential a continuum 
outgoing wave solution may be expressed as an infinite sum involving standing natural 
functions, which are defined as the residues at the poles, real and complex, of the 
corresponding standing Green function of the problem. The above representation is valid 
provided the elastic scattering by the potential is known. 

1. Introduction 

It is the aim of this paper to show that standing natural functions may be used to expand 
continuum outgoing wave solutions of the radial Schrodinger equation along the 
internal region of the potential for an interaction of finite range provided the elastic 
scattering dependence on momentum is known. 

In recent years there have been a number of works (Garcia-Calderbn 1976, 
Garcia-Calderbn and Rubio 1981, Bang et a1 1978,1980) concerning this problem. All 
of them are based on expansions in terms of the poles of the outgoing Green function of 
the problem, which are complex. In the present work we should like to explore such 
expansions by using the poles of the standing Green function. The residues at the poles 
of this function are solutions to the corresponding Schrodinger equation obeying the so 
called natural standing boundary conditions (Vitturi and Zardi 1974, Garcia-Calderbn 
and Berrondo 1979a). Though in general the corresponding eigenvalues are complex, a 
finite number of them stand on the real axis. These real poles correspond to a situation 
where the elastic phaseshift attains a value $.lr and are essentially related to the presence 
of either resonances or antiresonances (echoes) in the elastic cross section (Garcia- 
Calder6n and Berrondo 1979a, Humblet 1970, 1972). It is this fact which provides a 
distinctive feature to the real poles of the standing Green function, which has mainly 
instigated the present work. 

The poles and corresponding eigenfunctions, which we call standing natural 
functions, of the standing natural Green function have been used in the expansion of the 
K or Q matrices (Vitturi and Zardi 1974, Garcia-Calderbn and Berrondo 1979a, 
Humblet 1970,1972) in scattering theory. Actually, since the K or Q matrices depend 
only on the momentum or the energy, standing natural functions enter into such 
expansions for a given value of the relative distance r, which is usually taken at the 
surface of the interaction potential. In the present discussion there is, in addition to the 
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energy, a dependence on the radial coordinate r along the internal region of the 
potential. 

The paper is organised as follows. In 0 2 the expansion of the continuum wave 
solution in terms of standing natural functions is derived. Section 3 deals with an 
exactly solvable problem, the repulsive delta shell potential, and there a comparison is 
made between the exact results for the continuum wavefunction and its approximate 
values using the expansion in terms of real standing solutions. Finally 0 4 draws the 
conclusions to be made from this paper. 

2. Expansion 

Let us write the Schrodinger equation for the continuum outgoing solution \Ir t (k ,  r), 
associated with a given angular momentum 2, as 

where k 2  = E  is the energy in units where h = 2m = 1 and V ( r )  is a central potential of 
range a. The corresponding boundary conditions are 

\IrT(k, r = 0) = 0 

\IrT(k, I )  =$ [h i - ’ (kr ) -S l (k )h!” (kr ) ]  r > a  
( 2 )  

where S l ( k )  = exp(2i&(k)) is the S matrix of the problem, &(k) the corresponding 
phaseshift, and hj-’ (kr)  and h;” (kr )  are respectively the ingoing and outgoing Riccatti- 
Hankel functions (Taylor 1972). 

The standing Green function of the problem satisfies 

r 
a2 
-Gl(r, r ’ ;  k 2 ) +  
ar2 

Gl(r, r ’ ;  k 2 ) = 6 ( r - r ’ )  (3) 

with boundary conditions at r = 0 and r = a+ given by? 

Gl(r = 0,  r‘; k 2 )  = 0 
(4) 

r’;  k2 ) -b l (k ,  r)Gl(r, r ‘ ;  k 2 ) )  = O  r ’ s a  
r=a+ 

where bl(k,  r )  is defined as 

here the prime denotes derivative with respect to r and vl(k, r )  is an irregular solution of 
equation (4) which for r 2 a becomes the Riccatti-Neumann function (Taylor 1972). 
Using Green’s theorem between equations ( 1 )  and (3), integrating from r = 0 to r = a, 
and the corresponding boundary conditions leads after simple manipulations to the 
expression 

t We define a, = lim,,o a f E .  
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The standing Green function Gl(r, a ;  k2) is a meromorphic function of the complex 
variable k2 .  Its only singularities are poles, real and complex, distributed in the k2 
plane. They are the same as those of the K and Q functions (Garcia-Calder6n and 
Berrondo 1979, Humblet 1970). We shall assume that the poles are simple. This is not 
a very strong assumption because poles of second or higher order occur only in special 
circumstances and can be treated as limiting cases of simple poles (Garcia-Calderbn and 
Berrondo 1979a, Humblet 1970). 

Therefore, as one sees from equation (6), the expansion of q ; ( k ,  r )  results from the 
expansion of Gl(r ,  a ; k 2 )  in terms of its poles. The expansion may be obtained by using 
Cauchy's theorem. The interesting point (Garcia-Calderbn and Berrondo 1979b) is 
that for r' = a and r < a, i.e. equation (6), the standing Green function has the behaviour 

Gl(r ,  a ;  k 2 ) + 0  as lk21 + 00 (7) 
in all directions of the k 2  plane and therefore no integral or subtractions terms result in 
the Cauchy expansion. Hence 

The expression for the residues pnl (r, r') has been derived elsewhere (Garcia-Calder6n 
1976, Garcia-Calder6n and Rubio 1981). For r '=  a it reads 

Pn/(r, a )  = wn/(r)@nl(a) (9) 
provided the standing natural functions U,&), which satisfy the Schrodinger equation 
with eigenvalue kgl and boundary conditions wnl(0)  = 0 and [wkl(r) - 
bl(k,, r ) ~ ( n ; ) ] , , ~ +  = 0, are normalised according to the condition (Garcia-Calder6n and 
Berrondo 1979a, Vitturi and Zardi 1974) 

The normalisation condition is independent of the energy and can also be shown to be 
independent of the value of a provided this is taken at or beyond the range of the 
potential (Garcia-Calder6n and Berrondo 1979a). Therefore, using equation (8) in 
equation (6) leads to the expansion 

m 

yi+(k, r )  = C Cni(k)wni(r) 

where the expansion coefficients Cn&) are given by 

r < a  
n 

Hence for a given value of k we have obtained an expansion of the continuum outgoing 
solution Y t(k, r )  in terms of a discrete summation over the standing natural functions of 
the problem, valid in the interior region of the potential. 

It follows from equation (12) that the expansion coefficient for a given value of k, 
C&), depends on elastic scattering by the potential through the scattering matrix 
Sl(k) .  This situation, which is absent in expansions involving the outgoing Green 
function of the problem (Garcia-Calderbn 1976, Garcia-Calderbn and Rubio 1981), is 
the price one has to pay if one intends to use standing natural functions. Alternatively 
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one may write equation (12) in terms of the Q matrix by using the relationship 
(Garcia-Calderbn and Berrondo 1979a, Humblet 1970) 

The above expression is particularly useful if one is very near a real pole k?,! since 
then (Humblet 1970) 

consequently, using (12), (13) and (14) one obtains for *+(k, r) at a pole k i l  

We observe the interesting fact that at a given pole, either a resonance or an 
antiresonance pole, the continuum wave solution may be written as the corresponding 
standing natural eigenfunction times a coefficient which depends on the value at the 
radius r = a. Furthermore, we observe also that the resulting expression is independent 
of the normalisation condition for the standing natural functions. 

3. Solvable model 

In order to illustrate the expansion presented in the previous section, we consider in this 
section an exactly solvable problem, namely a repulsive delta shell potential of range a 
and strength A, i.e. V(r) = AS(r - a).  For the sake of simplicity we take angular 
momentum 1 = 0. 

The exact continuum solution to the radial Schrodinger equation of the problem 
may be written as in equation (6) or equivalently in terms of the regular solution and the 
Jost function (Taylor 1972), i.e. 

sin kr 
1 + (A/k) sin ka eika ‘ 

*+( k, r) = 

The expansion of *+(k, r) in terms of standing natural functions requires the 
scattering matrix S(k), which is given by (Garcia-Calderbn and Herrera Mote 1980, 
Gottfried 1966) 

1 + (A/ k)  sin ka e-ika 
1 + (A/k) sin ka eika ‘ 

S(k)  = (17) 

The standing eigenfunctions o,(r)  of the problem along the interior region of the 

w,(r) = a, sin k,r r s a  (18) 

potential are given by 

where the normalisation coefficient a, is obtained from equation (lo), i.e. 

2k, cos k,a 
2k,a cos k,a +(ha - 1) sin k,a . a: = 
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It is well known that for sufficiently large values of A, the delta shell potential 
possesses both resonances and antiresonances in the elastic cross section (Garcia- 
Calderbn and Herrera Mote 1980, Gottfried 1966). They may be seen as related to the 
presence of real poles of the standing Green function which for the present problem 
correspond to the zeros of the function (Berrondo and Garcia-Calderbn 1979) 

(20) 

In table 1, the first 20 real values of k, are given for A = 100 fm-' and a = 1 fm. In 
table 2, the exact and the expanded values of q + ( k ,  r )  are presented. The calculation 
was made for a number of values of the wavenumber k and of the distance r. 

The delta shell potential has been used also by Bang et a1 (1978). In their approach 
they consider the Mittag-Leffler expansion of a function q G ( k ,  r )  which, for 1 = 0, is 
related to q + ( k ,  r )  as 

1 + ( A / 2 k )  sin 2ka = 0. 

Table 1. Values of k, for the delta shell potential with A = 100 fm-' and a = 1 fm. 

n 

1 
2 

4 
5 
6 
7 
8 
9 

10 

k" 

1.586 065 05 
3.11046788 
4.760 061 8 
6.220 815 53 
7.933 654 92 
9.330 918 50 

11.107 584 67 
12.440 643 42 
14.282 004 08 
15.549 842 41 

n k, 

11 17.457 087 12 
1218.658 343 87' 
13 20.633 038 86 
14 21.705 952 26 
15 23.810 110 25 
16 24.87 413 83 
17 26.988 620 92 
18 27.977 413 55 
19 30.168 996 58 
20 31.080 528 0 

Table 2. Exact and expanded Y+ for A = 100, a = 1 and N = 11 poles. 

Exact Expanded 

k r  Re Y+ 

1.0 0.2 
0.4 
0.6 
0.8 
1 .o 

3.11 0.2 
0.4 
0.6 
0.8 
1 .o 

4.0 0.2 
0.4 
0.6 
0.8 
1 .o 

0.001 286 99 
0.002 522 67 
0.003 657 78 
0.004 647 07 
0.005 45 

-7.016 915 7 
-11.405 301 9 
-11.521 923 8 

-7.322 573 
-0.380 402 71 

0.024 990 
0.034 822 
0.023 530 9 

-0.002 033 
-0.026 364 58 

Im Y+ 

-0.001 961 23 
-0.003 844 27 
-0.005 574 06 
-0.007 081 62 
-0.008 306 86 

-14.844 545 9 
-24.128 763 1 
-24.375 057 
-15.491 175 

-0.804 560 7 
-0.026 769 
-0.037 301 
-0.025 206 4 

0.002 178 
0.028 241 83 

Re Y' 

0.001 140 90 
0.002 834 71 
0.003 112 32 
0.005 693 06 

-0.000 193 92 
-7.016 762 04 

-11.405 830 37 
-11.521 351 20 

-7.323 665 16 
-0.374 042 46 

0.025 779 94 
0.033 137 44 
0.026 466 03 

-0.007 603 89 
0.002 528 73 

-0.001 738 60 
-0.004 319 79 
-0.004 742483 
-0.008 675 60 

0.000 295 52 
-14.842 207 8 
-24.129 457 91 
-24.373 846 51 
-15.493 485 74 

-0.792 570 05 
-0.027 615 55 
-0.035 496 93 
-0.028 350 50 

0.008 145 31 
-0.002 708 79 



456 G Garc i'a -Ca ldero'n 

Clearly YG(k ,  r )  is just, except for a minus sign, the outgoing Green function of the 
problem (Garcia-Calder6n 1976, Bang e ta l l978) .  In table 3 a number of real values of 
k ,  are given for A = 40 fm-' and a = 1 fm. These values for the strength and range of 
the delta shell potential are the same as those chosen by Bang eta1 (1978). The above 
values of k, are used to calculate the exact and the expanded values of W + k ,  r ) .  The 
results are presented in table 4. 

Table 3. Values of k ,  for A = 40 fm-' and a = 1 fm. 

1 1.611 11797 6 9.186 169 69 
2 3.064 672 79 7 11.295 659 41 
3 4.834 459 53 8 12.237 166 66 
4 6.127 494 18 9 14.544 294 67 
5 8.061 416 56 10 15.273 471 15 

Table 4. Exact and expanded YG(k, r )  for A = 40 fm-', a = 1 fm and N = 10 poles. 

Exact Expanded 

k r Re YG Im qG Re YG Im Y" 

1.0 0.2 0.005805 68 
0.4 0.011 379 90 
0.6 0.016 500 44 
0.8 0,020 903 16 
1.0 0.024 590 15 

3.0 0.2 0.20593631 
0.4 0.339 933 15 
0.6 0.355 181 56 
0.8 0.246 354 83 
1.0 0.051 469 27 

3.0648 0.2 0.184 166 16 
(res) 0.4 0.301 282 04 

0.6 0.308 708 69 
0.8 0.203 742 26 
1.0 0.024 598 38 

4.0 0.2 -0.021 0297 
0.4 -0.030 139 11 
0.6 0.020 366 55 
0.8 0.001 760 10 
1.0 0.022 819 09 

0.000 142 8 
0.000 28 
0.000 405 99 
0.000 515 8 
0.000 605 040 
0.032 594 76 
0.053 803 23 
0.056 216 68 
0.038 992 03 
0.008 146 35 
2.429 006 85 
3.973 673 26 
4.071 624 97 
2.687 200 22 
0.324 433 0 

-0.001 991 01 
-0.002 774 3 
-0.001 874 74 

0.000 162 02 
0.002 100 49 

0.005 363 97 
0.012 379 05 
0.145 859 3 
0.025 095 5 

-0.000 911 73 
0.205 518 11 
0.340 878 22 
0.353 375 01 
0.250 229 61 
0.028 047 39 
0.184 166 74 
0.301 282 83 
0.308 709 77 
0.203 742 47 
0.024 600 76 

-0.022 124 01 
-0.029 023 04 
-0.022 495 19 

0.006 299 64 
-0.004 120 20 

0.000 142 85 
0.000 304 59 
0.000 358 89 
0.000 617 48 

-0.000 022 43 
0.032 528 57 
0.053 952 81 
0.055 930 75 
0.039 605 32 
0.004 439 23 
2.429 014 5 1  
3.973 083 69 
4.071 639 26 
2.687 203 06 
0.324 464 66 

-0.002 030 5 1  
-0.002 671 57 
-0.002 070 68 

0.000 579 88 
-0.000 379 26 

In table 5 the exact and the expanded results for the wave solution are presented for 
a fixed value of the distance r and several values of the strength A, the wavenumber k 
and the number of poles N. 

It follows from tables 2, 4 and 5 that the expanded solution gives excellent 
agreement with the exact solution at resonance and antiresonance values of k for values 
of r along the interior region r < a. For other values of the wavenumber, the results, 
although reasonable, indicate that more terms, i.e. complex contributions, must be 
taken into account. 
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Table 5. Exact and expanded values of k for I = 0.6 fm and a = 1 fm. * and ** indicate, 
respectively, resonance and antiresonance values of k. 

Exact Expanded 

N k A Re Y+ Im Y+ Re Y+ Im Y+ 

2 2.0 10 -0.04648 -0.215 42 -0.045 31 -0.209 99 
10 2.0 40 -0.01934 -0.048 68 -0.018 12 -0.045 61 
20 2.0 1000 -0.000 85 -0.001 87 -0.000 81 -0.001 78 

1 *2.83961 10 0.000 20 -3.181 9 0.000 20 -3.181 9 
1 **1.611 11 40 0.000 00 -0.012 775 0.000 00 -0.127 84 
1 *3.13846 1000 133.61 -225.01 133.61 -225.01 

For values of the distance at the radius r = a, the expansion obviously fails. However 
it gives excellent agreement at resonance or antiresonance values. This is not 
surprising. Actually it has been proved (Garcia-Calder6n and Berrondo 1979a, b) that 
at the radius r = a, a convergent expansion of the standing Green function in terms of its 
poles requires one subtraction term. At resonance energy the corresponding pole term 
is so dominant that all other contributions including the subtraction term remain 
negligible. The scattering matrix may be obtained from (2) and (6). For 1 = 0 it reads 

1 +ik(-(tan k a ) / k  -(cos2 ka)-'G(a, a ;  k)) 
S(k'~ -ik(-(tan k a ) / k  -(cos* k a ) - ' ~ ( a ,  a ;  k ) )  

where the expression inside the brackets of equation (22) corresponds to the Q matrix 
of the problem (Garcia-Calder6n and Berrondo 1979a). The one-pole approximation 
for G(a, a ;  k )  follows from (8) with r = a, and the corresponding one involving one 
subtraction at k = 0 reads 

a k 2  @:(a)  G(u, U ;  k )  -- +-- 
l + h a  kZ, k2-kZ,' 

In order to illustrate the above points, in table 6 the exact value of the partial elastic 
cross section for the delta shell potential (I  = 0) is compared with the one-pole and 
one-pole plus subtraction approximations, for several values of k near the first 
resonance pole. 

Table 6. Exact and one-pole approximations with and without subtraction term for the 
partial wave elastic cross section ( l  = 0) for the delta shell potential with A = 40 fm-' and 
a = 1 fm around the resonance value k, = 3.064 672 79. 

k c(k)Exact u ( k ) ' ~ p o ' c  u ( k )  

2.8 0.276 7 0.201 9 0.272 0 
3.0 0.120 8 0.071 9 0.118 0 
3.05 0.326 1 0.260 7 0.322 7 
3.064 6 (res) 1.337 9 1.337 9 1.337 9 
3.07 0.630 5 0.535 6 0.633 1 
3.141 59 0.000 0 0.007 3 0.000 0 
3.2 0.000 0 0.012 7 0.000 0 
3.4 0.040 5 0.801 0 0.041 6 
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4. Conclusions 

The main results of this paper are appropriately represented by equations (1 1) and 
(15). The first of these equations shows that a continuum wave solution of the 
Schrodinger equation for a potential of range a may be expanded in terms of an infinite 
set of standing natural functions along the interior region of the potential r < a. The 
second equation, i.e. equation (15), indicates that for a value of the wavenumber 
corresponding to a real pole, i.e. at resonance or antiresonance values, the continuum 
wave solution may be written approximately as the corresponding standing wave 
solution times a purely imaginary coefficient which makes the whole expression 
independent of the normalisation condition of the standing natural function. Though 
the expansion of the continuum wave solution at r = a  in terms of standing wave 
solutions requires one subtraction term (Garcia-Calder6n and Berrondo 1979a, b), it is 
well known that for values of the energy around resonance the corresponding pole term 
dominates and therefore around resonance it is possible to provide a prescription which 
discretises the continuum wave solution for r G a. This prescription may provide some 
advantages in comparison with others which involve complex quantities as in expan- 
sions of the outgoing Green function (Garcia-Calder6n 1976, Garcia-Calder6n and 
Rubio 1981, Bang eta1 1978, 1980). At present, extension of the ideas discussed here 
to potentials behaving differently as a function of distance are in progress. 
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